

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry

Tetrahedron: Asymmetry 18 (2007) 424-434

Asymmetric synthesis of di- and trisubstituted pyrrolidinones via zirconium-mediated intramolecular coupling of *N*-3-alkenyl carbamates

Clément Denhez, Jean-Luc Vasse, Dominique Harakat and Jan Szymoniak*

Réactions Sélectives et Applications, CNRS (UMR 6519) and Université de Reims, 51687 Reims Cedex 2, France

Received 2 January 2007; accepted 22 January 2007 Available online 21 February 2007

Abstract—N-3-Alkenyl carbamates, which are readily available in enantiomerically pure form, undergo a stereoselective intramolecular coupling under the effect of a Cp₂ZrCl₂/2n-BuLi reagent. The influence of the carbamate structure on the stereoselectivity was tested. The reaction gives an easy access to various di- and trisubstituted enantiopure pyrrolidinones. © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The pyrrolidine and pyrrolidinone moieties are present in many biologically active molecules, both naturally occurring and synthetic.¹ Therefore, the development of efficient and stereoselective methods for the synthesis of such nitrogen heterocycles is an important task. In addition to the C-N bond-forming cyclization reactions,² C–C bond-forming reactions have recently emerged as an interesting alternative for building five-membered nitrogen-heterocycles.³ Among them, zirconium-mediated intramolecular coupling reactions⁴ have been employed. We described a new diastereoselective synthesis of 2-substituted pyrrolidines from *N*-allyl oxazolidines via a tandem hydrozirconation–Lewis acid-mediated ring-closure sequence (Scheme 1, Eq. a).⁵ Taguchi et al. found access to the pyrrolidinone ring system via a Zr(II)-mediated intramolecular coupling reaction starting from N-homoallyl carbamates (Scheme 1, Eq. b).⁶ Interestingly, a possible functionalization of the pyrrolidinone side chain emphasizes the synthetic potential of this reaction.⁷

Although these two reactions employed the same strategy (i.e., the formal conversion of an alkene into a nucleophilic entity followed by a ring-closure step), the stereogenic centers are created at different stages. In contrast to the pyrrolidine synthesis, for which the configuration of the stereogenic center declined from the configuration of the

Scheme 1. Access to pyrrolidines and pyrrolidinones via zirconiummediated alkene activation.

aminal, the pyrrolidinone synthesis involves a C–Zr bond formation as the stereodetermining step. This offers the possibility of developing the asymmetric variant of the reaction. Herein, we report an efficient and diastereoselective zirconium-mediated synthesis of di- and trisubstituted pyrrolidinones (γ -lactams) from enantiomerically pure *N*-3-alkenyl carbamates.

2. Results and discussion

Since the required enantiomerically pure side chain can easily be obtained via diastereoselective allylation of amino

^{*} Corresponding author. E-mail: jan.szymoniak@univ-reims.fr

^{0957-4166/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2007.01.026

alcohol-derived imines, we first synthesized carbamates derived from phenylglycinol. In fact, an efficient final deprotection of such a chiral auxiliary is already known.⁸ We also thought that the presence of an additional stereogenic center might influence the stereoselectivity of the cyclization (Scheme 2). Following this retrosynthetic approach, the pyrrolidinone skeleton results from zirconium-mediated intramolecular coupling reaction. The stereochemistry at the C3 atom in pyrrolidinone derives from the stereodefined zirconacyclopropane, which in turn is generated through the facial discrimination of the C=C double bond, under the effect of the proximal stereogenic centers (C1 and/or C2) of the nitrogen side chain of a carbamate. As indicated, such carbamates could be obtained simply.

Scheme 2. Retrosynthetic approach.

Carbamates **1a**–**e** were first prepared by employing readily available (R)-2-phenylglycinol. The reaction of phenylglycinol-derived imines with allylbromide and zinc in the presence of CeCl₃·7H₂O provided the corresponding amino alcohols in good yields, and in good to excellent diastereoselectivities.⁹ Subsequent treatment with triphosgen, in the presence of pyridine and a catalytic amount of DMAP, gave the corresponding carbamates **1a–e** in almost quantitative yields¹⁰ (Scheme 3).

Scheme 3. Synthesis of carbamates 1a-e.

These diversely substituted carbamates were submitted to the zirconium-mediated alkene–carbamate coupling reaction under modified Taguchi conditions (see Section 4). As shown in Table 1, the reaction proceeded smoothly with carbamates bearing aromatic (entries 1 and 4), heteroaromatic (entries 2 and 3), and alkyl R groups (entry 5) to afford the corresponding pyrrolidinones in good yields. However, a poor stereoselectivity (dr = 1.2:1-3:1) was observed in these reactions. The major diastereomer could be isolated in a pure form by column chromatography in most cases.

To estimate the influence of the carbamate substituent (R' = Ph) upon the stereochemical outcome of the reaction, the same reaction sequence was applied to the substrates containing a substituent-free (R' = H) ethanolamine-derived carbamate moiety (Table 1, entries 6–8).

Table 1. Synthesis of disubstituted pyrrolidinones

ſ	R N	R'	1) Cp ₂ ZrCl ₂ , <i>n-</i> BuLi (2 equiv)		R ^R ···································		
	000	5	2) H ₂ O		-	\rightarrow	
	1a-h					2a-h	
Entry	R			\mathbf{R}'		Compound	dr

Entry	R	R′	Compound	dr
1	Ph	Ph	2a (78%)	1.4:1
2	2-Fur	Ph	2b (75%)	1.2:1
3	2-(1-Me–Pyr)	Ph	2c (73%)	3:1
4	2-MeO-C ₆ H ₄	Ph	2d (74%)	1.3:1
5	<i>i</i> -Pr	Ph	2e (78%)	1.4:1
6 ^a	Ph	Н	2f (78%)	2:1
7 ^a	2-MeO-C ₆ H ₄	Н	2g (78%)	2:1
8^{a}	Ph-CH=CH	Н	2h (46%)	6:1

^a Reaction carried out in the racemic series.

The diastereoselectivity was improved in these cases but remained moderate. Additionally, compound **2h** was obtained solely from carbamate **1h** bearing two alkene chains with a different degree of substitution (entry 8). As an example of deprotection, the chiral auxiliary was removed from diastereomerically pure **2a** to afford the corresponding enantiopure 3-methyl-5-phenylpyrrolidinone *trans*-3 (Scheme 4).

Scheme 4. Removal of the chiral auxiliary.

In a recent paper, Taguchi reported that a high level of diastereoselectivity could be achieved in the ester transfer coupling reaction using *t*-butyloxy *N*-tosyl carbamate. In contrast, no selectivity was obtained when employing the benzyloxy analogue.⁷ We assumed that in our case, the low stereoselectivity originated from an inefficient discrimination of the carbonyl group, supposed to stereodirect the zirconocene approach. Therefore, a most suitable environment around the carbamate has been envisioned, by increasing the steric bulkiness at the O atom. This was ensured by using non-cyclic carbamates **4a–1** as starting materials (Table 2).

Accordingly, compounds **4a–1** were synthesized from the corresponding imines by alkylation and Boc protection. Compounds **4a–1** were subjected to the reaction conditions as previously described, and the results are shown in Table 2. The stereochemical outcome of the reaction has been demonstrated to depend strongly on the adjustment of the nitrogen- and oxygen-carbamate groups (\mathbb{R}^2 and \mathbb{R}^3). Whereas a total lack of diastereoselectivity was observed when combining two small or two large groups (entries 1–3), good diastereomeric ratios, in favor of the *cis*-isomer,¹¹ were obtained when combining a small and a large

Table 2. Synthesis of disubstituted carbamates 5

PMP = 4-methoxyphenyl, PMB = 4-methoxybenzyl.

^a Reaction carried out in the racemic series.

^b Reaction carried out by using the enantiomerically pure substrate.

group (entries 4–6). 1,3-Disubstituted pyrrolidinones **5g–1** were consequently obtained with good diastereoselectivities, when using carbamates with *t*-BuO group together with a small *N*-group (entries 7–12). An efficient stereoselective synthesis of 1,3-disubstituted pyrrolidinones would be thus ensured by the suitable tuning of N- and O- protecting groups. The products can be easily deprotected when using carbamates with *N*-PMB group (Section 4).

Finally, when using carbamate 4m with a non-terminal C=C double bond, pyrrolidinone 5m was obtained in 56% yield as a 3.5:1 mixture of diastereomers (Scheme 5).

To account for the observed selectivity when using *t*-butyloxy carbamates **4d**–**I**, we first assumed that the presence of two differently sized substituents (Bn and the homoallyl chain) at the nitrogen atom would preferentially orientate the carbonyl toward the largest homoallyl fragment (Scheme 6). Moreover, it is likely that the R¹ group adopts a pseudo-axial position with respect to the carbamate plan. Therefore, to minimize the steric interactions, and acting as a relay, the flexible protecting group would be located at the opposite side from both the phenyl group and the *t*-butyloxy group as depicted in conformer **I**. Accordingly, the bulky *t*-butyloxy group would cloud selectively one face of the carbonyl moiety, enhancing the approach of the

Scheme 6. Proposed stereochemical rationale.

zirconium complex from the more accessible face of the carbonyl as shown in complex II. Thus, the alkene–carbamate coupling reaction affords bicyclic intermediate III, precursor of lactam IV.

The reaction was next extended to the synthesis of trisubstituted pyrrolidinones. Starting carbamates 7 with an additional substituent at the allylic position (Ph or Me at C_{β} -N) were synthesized in two steps from the (*R*)-2-phenylglycinol-derived imines (Scheme 7). The amino alcohol precursors were obtained by cerium trichloride-catalyzed allylzinc bromide addition to the corresponding imine in good yield, but with a different level of asymmetric induction.¹² However, they could be isolated in a pure diastereomerical form after separation by column chromatography. Further condensation with triphosgene quantitatively afforded the desired carbamates 7 (Scheme 7). Additionally, opened carbamate 7e was synthesized from amino alcohol **6e** by Pb(OAc)₄ treatment, followed by NaBH₄ reduction of the resulting imine and Boc protection.

Scheme 7. Synthesis of carbamates 7. Reagents and conditions: (i) $R^2CH=CH-CH_2Br$, Zn, $CeCl_3\cdot 7H_2O$, Zn, THF; (ii) $(Cl_3CO)_2CO$, cat. DMAP, pyridine, CH_2Cl_2 ; (iii) (a) Pb(OAc)₄, CH_2Cl_2 , MeOH, (b) NaBH₄; (iv) Boc₂O, CH_2Cl_2 .

The intramolecular alkene–carbamate coupling reactions were performed as previously described and the results

are shown in Table 3. The trisubstituted pyrrolidinones were obtained from both opened (7e) and cyclic (7a–d) carbamates in good yields and diastereoselectivities. Aryl, heteroaryl, and alkyl groups can be present on the C_{α} –N atom of the carbamate leading to pyrrolidinones 8a–e.

Table 3. Synthesis of trisubstituted pyrrolidinones 8

3. Conclusion

In conclusion, we have described an efficient and straightforward synthesis of optically active di- and trisubstituted pyrrolidinones via a zirconium-mediated alkene–carbamate intramolecular coupling reaction. This reaction is quite general and gives access to diversely substituted pyrrolidines, which are valuable building blocks. Acyclic carbamates have been shown to be more appropriate than the cyclic ones to prepare disubstituted pyrrolidinones in a highly stereoselective way. Cyclic carbamates derived from an amino alcohol can be used for the stereoselective preparation of trisubstituted pyrrolidinones. The easy preparation of starting materials and versatile utility of substituted pyrrolidinones, render this method attractive in organic synthesis.

4. Experimental

4.1. General

All reactions were conducted under an atmosphere of argon using standard Schlenk techniques. Prior to use, tetrahydrofuran and Et₂O were distilled under argon from sodium benzophenone ketyl, NEt₃, CH₃CN, and CH₂Cl₂ were distilled under argon from CaH₂. Reagents (Aldrich) were used as received. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a Brucker AC-250. Mass spectra were recorded on a Micromass Q-TOF micro MS spectrometer.

4.2. (*R*)-2-[(*R*)-1-(1-Methyl-1*H*-pyrrol-2-yl)but-3-enyl-amino]-2-phenylethanol

To a mixture of (R)-2-[(1-methyl-1H-pyrrol-2-yl)methyleneamino]-2-phenylethanol (1.14 g, 5 mmol), zinc dust (0.82 g, 12.5 mmol), and CeCl₃·7H₂O (0.19 g, 0.5 mmol) in THF (20 mL), was added dropwise allylbromide (1.3 mL, 12.5 mmol) at 0 °C. The resulting mixture was stirred for 2 h and quenched with water (20 mL). The lavers were separated and the aqueous layer extracted with Et₂O $(3 \times 20 \text{ mL})$. The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether/AcOEt as solvent to give the title compound as a pale yellow oil. $[\alpha]_{D}^{25} = -44.5$ (*c* 0.9, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.29 (m, 5H), 6.48 (t, 1H, J = 2.2 Hz), 6.05 (m, 2H), 5.71 (tdd, 1H, J = 7.0, 10.2, 17.1 Hz), 5.04 (dm, 1H, J = 17.1 Hz), 5.01 (dm, 1H, J = 10.2 Hz), 3.90 (dd, 1H, J = 4.6, 7.9 Hz), 3.76 (dd, 1H, J = 6.0, 7.3 Hz), 3.66 (d, 1H, J = 4.6 Hz), 3.51 (dd, 1H, J = 8.0, 10.7 Hz), 3.37 (s, 3H), 2.43–2.63 (m, 2H); ¹³C NMR (62.5 MHz, CDCl₃): δ 141.0, 135.1, 134.2, 128.6, 127.6, 127.3, 121.9, 117.2, 106.7, 106.3, 66.0, 61.1, 51.5, 39.2, 33.7; IR (film) v_{max}: 3371, 2926, 2867, 1634, 1053, 701; 3330, 2927, 1491, 1453, 703 cm⁻¹; HRMS-ESI: m/z $[M+H]^+$ calcd for C₁₇H₂₃N₂O: 271.1810; found: 271.1812.

4.3. General procedure for the preparation of carbamates 1a-h (procedure A)

A solution of triphosgene[®] (148 mg, 1 mmol) in CH_2Cl_2 (2 mL) was added dropwise to a solution of amino alcohol (2 mmol) and pyridine (0.18 mL, 2 mmol) in CH_2Cl_2 (3 mL) at 0 °C. The resulting mixture was stirred for 2 h at rt and diluted with CH_2Cl_2 (10 mL). The organic layer was washed with an aqueous solution of HCl (1 M, 5 mL), dried over MgSO₄, and concentrated under vacuum. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether/AcOEt as solvent to give the corresponding carbamate.

4.3.1. (*R*)-4-Phenyl-3-[(*R*)-1-phenylbut-3-enyl]oxazolidin-2one 1a. Yellow oil; $[\alpha]_D^{25} = -11.0$ (*c* 1.2, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.28 (m, 6H), 7.13 (m, 4H), 5.67 (tdd, 1H, J = 6.2, 10.2, 16.8 Hz), 5.01 (t, 1H, J = 8.0 Hz), 4.91 (dm, 1H, J = 10.2 Hz), 4.86 (dm, 1H, J = 16.8 Hz), 4.34 (dd, 1H, J = 8.0, 9.0 Hz), 4.23 (dd, 1H, J = 6.5, 7.8 Hz), 4.07 (dd, 1H, J = 6.5, 8.0 Hz), 2.25 (m, 2H); ¹³C NMR (62.5 MHz, CDCl₃): δ 174.5, 139.3, 137.5, 134.5, 129.0, 128.9, 128.5, 128.4, 128.1, 127.7, 117.6, 70.2, 58.8, 58.3, 35.7; IR (film): v_{max} 1725, 14.05, 1235, 1045, 925, 705 cm⁻¹; HRMS-ESI: m/z[M+H]⁺ calcd for C₁₉H₂₀NO₂: 294.1494; found: 294.1493.

4.3.2. (*R*)-3-[(*R*)-1-(Furan-2-yl)but-3-enyl]-4-phenyloxazolidin-2-one 1b. Red oil; $[\alpha]_{25}^{25} = -8.5$ (*c* 1, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.36 (dd, 1H, J = 1.0, 1.8 Hz), 7.38 (m, 3H), 7.27 (m, 2H), 6.29 (dd, 1H, J = 2.1, 3.2 Hz), 6.08 (d, 1H, J = 3.2 Hz), 5.55 (tdd, 1H, J = 6.7, 10.2, 17.2 Hz), 5.06 (t, 1H, J = 7.9 Hz), 5.01 (dm, 1H, J = 10.2 Hz), 4.44 (t, 1H, J = 6.9 Hz), 4.28 (dd, 1H, J = 6.7, 8.7 Hz), 4.05 (dd, 1H, J = 7.0, 8.2 Hz), 2.11 (m, 2H); ¹³C NMR (62.5 MHz, CDCl₃): δ 158.4, 151.3, 142.3, 139.1, 133.7, 128.9, 128.5, 127.5, 117.6, 110.0, 109.0, 70.1, 58.8, 52.7, 35.3; IR (film) v: 2933, 1710, 1640, 1439 cm⁻¹; HRMS-ESI: m/z [M+Na]⁺ calcd for C₁₇H₁₇NO₃: 306.1116; found: 306.1111.

4.3.3. (*R*)-3-[(*R*)-1-(1-Methyl-1*H*-pyrrol-2-yl)but-3-enyl]-**4-phenyloxazolidin-2-one 1c.** Yellow oil; $[\alpha]_{25}^{25} = -15.5$ (*c* 1, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.35 (m, 3H), 7.25 (m, 2H), 6.68 (dd, 1H, *J* = 1.7, 2.8 Hz), 6.09 (dd, 1H, *J* = 2.8, 3.5 Hz), 5.88 (dd, 1H, *J* = 1.7, 3.5 Hz), 5.70 (dddd, 1H, *J* = 6.0, 7.0, 10.5, 17.0 Hz), 4.99 (dm, 1H, *J* = 17.0 Hz), 4.88 (dm, 1H, *J* = 10.5 Hz), 4.48 (t, 1H, *J* = 11.3 Hz), 4.17 (dd, 1H, *J* = 2.7, 6.5 Hz), 4.12 (dd, 1H, *J* = 2.2, 6.7 Hz), 3.60 (s, 3H), 2.22–2.02 (m, 2H); ¹³C NMR (62.5 MHz, CDCl₃): δ 181.0, 158.2, 139.9, 134.5, 129.0, 128.7, 127.8, 123.2, 117.5, 109.6, 106.7, 70.4, 57.7, 50.8, 36.9, 33.9; IR (film): v_{max} 1750, 1404, 1218, 1423, 701 cm⁻¹; HRMS-ESI: *m*/*z* [M+Na]⁺ calcd for C₁₈H₂₀N₂O₂: 319.1422; found: 319.1425.

4.3.4. (*R*)-3-[(*R*)-1-(2-Methoxyphenyl)but-3-enyl]-4-phenyloxazolidin-2-one 1d. Yellow oil; $[\alpha]_D^{25} = -19$ (*c* 0.8, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.32 (m, 4H), 7.08 (m, 2H), 6.96 (t, 1H, *J* = 7.0 Hz), 6.90 (d, 2H, *J* = 8.5 Hz), 5.78 (tdd, 1H, *J* = 6.5, 10.0, 17.2 Hz), 5.33 (dd, 1H, *J* = 7.5, 9.0 Hz), 5.02 (dm, 1H, *J* = 10.0 Hz), 4.96 (dm, 1H, *J* = 17.0 Hz), 4.40 (t, 1H, *J* = 8.2 Hz), 4.03 (dt, 1H, *J* = 7.6 Hz), 3.80 (s, 3H), 2.32 (m, 2H); ¹³C NMR (62.5 MHz, CDCl₃): δ 158.7, 157.6, 139.6, 135.0, 129.3, 128.8, 128.7, 128.6, 127.7, 125.1, 119.9, 117.4, 110.2, 70.0, 59.1, 55.4, 52.5, 36.2; IR (film): v_{max} 1755, 1490, 1450 cm⁻¹; HRMS-ESI: *m*/*z* [M+Na]⁺ calcd for C₂₀H₂₂NO₃: 324.1600; found: 324.1597.

4.3.5. (*R*)-3-[(*R*)-2-Methylhex-5-en-3-yl]-4-phenyloxazolidin-2-one 1e. Yellow oil; $[\alpha]_D^{25} = -14$ (*c* 0.8, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.38 (m, 5H), 5.76 (tdd, 1H, J = 6.0, 10.2, 17.0 Hz), 5.04 (dm, 1H, J = 10.2 Hz), 4.96 (dm, 1H, J = 17.2 Hz), 4.75 (dd, 1H, J = 7.0, 9.0 Hz), 4.58 (t, 1H, J = 8.7 Hz), 4.23 (dd, 1H, J = 6.7, 8.7 Hz), 3.07 (dt, 1H, J = 4.0, 10.2 Hz), 2.12 (m, 2H), 0.88 (d, 3H, J = 6.7 Hz), 0.81 (d, 3H, J = 6.7 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 151.9, 138.7, 135.6, 129.1, 128.9, 128.2, 117.4, 69.8, 61.3, 60.7, 34.7, 29.8, 20.6, 20.4; IR (film): v_{max} 1745, 1410, 1220 cm⁻¹; HRMS-ESI: m/z [M+Na]⁺ calcd for C₁₆H₂₁NO₂Na: 282.1470; found: 282.1471.

4.3.6. 3-(1-Phenylbut-3-enyl)oxazolidin-2-one 1f. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.35 (m, 5H), 5.82 (dddd, 1H, J = 6.0, 7.5, 10.2, 17.3 Hz), 5.24–5.08 (m, 2H), 4.34–4.16 (m, 2H), 3.50 (ddd, 1H, J = 6.5, 8.2, 9.0 Hz), 3.20 (ddd, 1H, J = 7.5, 8.2, 9.0 Hz), 2.85–2.64 (m, 2H); ¹³C NMR (62.5 MHz, CDCl₃): δ 158.2, 138.1, 134.1, 128.7, 128.0, 127.4, 117.8, 61.9, 55.6, 40.0, 34.7; IR (film): v_{max} 2918, 1733, 1423, 1252, 703 cm⁻¹; HRMS-ESI: m/z [M+Na]⁺ calcd for C₁₃H₁₅NO₂Na: 240.1000; found: 240.0998.

4.3.7. 3-[1-(2-Methoxyphenyl)but-3-enyl]oxazolidin-2-one 1g. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.30 (m, 2H), 6.92 (m, 2H), 5.82 (m, 1H), 5.35 (dd, 1H, J = 6.5, 9.2 Hz), 5.18 (dm, 1H, J = 17.5 Hz), 5.08 (dm, 1H, J = 10.7 Hz), 4.15–4.30 (m, 2H), 3.84 (s, 3H), 3.54 (td, 1H, J = 6.1, 8.4 Hz), 3.22 (td, 1H, J = 6.9, 8.4 Hz), 2.78 (m, 2H); ¹³C NMR (62.5 MHz, CDCl₃): δ 157.8, 157.5, 134.7, 129.2, 128.0, 126.3, 120.2, 117.5, 110.8, 61.8, 55.4, 51.1, 41.5, 34.9; IR (film): v_{max} 2920, 1745, 1492, 1421, 1248 cm⁻¹; HRMS-ESI: m/z [M+Na]⁺ calcd for C₁₄H₁₇NO₂Na: 270.1006; found: 270.1008.

4.3.8. 3-[(*E*)-1-Phenylhexa-1,5-dien-3-yl]oxazolidin-2-one **1h.** Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.40– 7.25 (m, 5H), 6.58 (dd, 1H, J = 1.2, 16.0 Hz), 6.16 (dd, 1H, J = 6.5, 16.0 Hz), 5.82 (tdd, 1H, J = 6.0, 10.0, 17.0 Hz), 5.18 (dm, 1H, J = 17.0 Hz), 5.13 (dm, 1H, J = 10.0 Hz), 4.65 (td, 1H, J = 6.5, 8.8 Hz), 4.33 (t app, 1H, J = 8.0 Hz), 3.53 (t app, 1H, J = 7.8 Hz), 2.55 (ddm, 1H, J = 6.5, 14.2 Hz), 2.46 (ddm, 1H, J = 8.7, 14.2 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 133.9, 132.7, 128.6, 128.0, 126.4, 126.0, 117.9, 62.0, 54.1, 40.4, 36.2, 2C are missing; IR (film): v_{max} 2917, 1742, 1425, 1254 cm⁻¹; HRMS-ESI: m/z [M+Na]⁺ calcd for C₁₅H₁₇NO₂Na: 266.1157; found: 266.1154.

4.4. General procedure for the preparation of pyrrolidinones 2a-h (procedure B)

To a solution of Cp_2ZrCl_2 (292 mg, 1 mmol) in THF (5 mL) was added dropwise a solution of *n*-BuLi (1.6 in hexane, 1.25 mL, 2 mmol) at -78 °C under Ar. The resulting solution was stirred at -78 °C for 30 min, then a solution of carbamates 1, 4, or 7 (1 mmol) in THF (2 mL) was added dropwise at this temperature. The reaction was slowly warmed to room temperature, and then stirred for 6 h. The reaction was quenched by adding an aqueous solution of HCl (1 M, 2 mL). The aqueous layer was extracted with AcOEt (3 × 5 mL). The organic layers were combined, dried over MgSO₄, and concentrated under vacuum. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether/AcOEt as solvent to give the corresponding pyrrolidinone.

4.4.1. (3*S*,5*R*)-1-[(*R*)-2-Hydroxy-1-phenylethyl]-3-methyl-5-phenylpyrrolidin-2-one 2a. Major diastereomer: White solid; $[\alpha]_D^{25} = -22.5$ (*c* 1.1, CH₂Cl₂); mp 106 °C ¹H NMR (250 MHz, CDCl₃): δ 7.28 (m, 6H), 7.10 (m, 4H), 5.22 (dd, 1H, *J* = 6.0, 8.3 Hz), 4.28 (dd, 1H, *J* = 3.1, 8.5 Hz), 3.86–3.62 (m, 2H), 2.89 (m, 1H), 2.75 (br m, 1H), 2.15–1.86 (m, 2H), 1.24 (d, 3H, *J* = 7.1 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 179.6, 142.2, 136.3, 128.7, 128.5, 128.3, 128.0 (2C), 126.4, 63.1, 60.3, 59.5, 38.1, 35.4, 16.3; HRMS-ESI: *m*/*z* [M+H]⁺ calcd for C₁₉H₂₂NO₂: 296.1651; found: 296.1644; Anal. Calcd for C₁₉H₂₁NO₂: C, 77.26; H, 7.17; N, 4.74. Found: C, 77.38; H, 7.26; N, 4.63.

4.4.2. 5-(Furan-2-yl)-1-[(*R***)-2-hydroxy-1-phenylethyl]-3methylpyrrolidin-2-one 2b.** Red oil; major diastereomer (3S,5R): ¹H NMR (250 MHz, CDCl₃): δ 7.28 (m, 4H), 7.15 (m, 2H), 6.25 (dd, 1H, J = 1.8, 3.2 Hz), 6.07 (d, 1H, J = 0.7, 3.2 Hz), 5.17 (dd, 1H, J = 6.5, 7.5 Hz), 4.34 (dd, 1H, J = 2.8, 8.7 Hz), 3.77 (m, 2H), 2.99 (qdd, 1H, J = 7.1, 8.5, 9.5 Hz), 2.28 (ddd, 1H, J = 2.8, 8.2, 12.6 Hz), 1.89 (ddd, 1H, J = 8.7, 9.5, 12.6 Hz), 1.26 (d, 3H, J = 7.1 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 178.9, 153.7, 142.4, 136.2, 128.6, 128.5, 128.0, 127.8, 110.4, 107.6, 62.6, 59.2, 53.1, 35.9, 34.7, 16.1; IR (film): v_{max} 3402, 2971, 2933, 2876, 1677, 1454, 1418, 1251, 1062, 1012, 749, 699 cm⁻¹; HRMS-ESI: m/z [M+H]⁺ calcd for C₁₇H₂₀NO₃: 286.1443; found: 286.1448.

4.4.3. 1-[(*R*)-2-Hydroxy-1-phenylethyl]-3-methyl-5-(1-methyl-1*H*-pyrrol-2-yl)pyrrolidin-2-one 2c. Yellow oil; major diastereomer (3*S*,5*R*): ¹H NMR (250 MHz, CDCl₃): δ 7.30 (m, 3H), 7.11 (m, 2H), 6.49 (dd, 1H, *J* = 2.0, 2.7 Hz), 6.10 (dd, 1H, *J* = 2.0, 3.7 Hz), 6.05 (dd, 1H, *J* = 2.7, 3.5 Hz), 5.20 (dd, 1H, *J* = 5.2, 8.0 Hz), 4.39 (dd, 1H, *J* = 3.2, 8.5 Hz), 3.98 (ddd, 1H, *J* = 6.2, 8.0, 11.5 Hz), 3.85 (td, 1H, *J* = 5.0, 11.5 Hz), 3.09 (s, 3H), 2.90 (qt, 1H, *J* = 7.0, 8.5 Hz), 2.73 (br t, 1H, *J* = 5.7 Hz), 2.14 (ddd, 1H, *J* = 3.0, 8.2, 12.5 Hz), 1.90 (td, 1H, *J* = 8.7, 12.5 Hz), 1.25 (d, 3H, *J* = 7.0 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 179.1, 136.5, 131.7, 128.6, 128.3, 128.0, 122.9, 107.3, 63.2, 59.0, 52.2, 36.4, 35.2, 33.6, 16.1; IR (film): v_{max} 3411, 2967, 1674, 753, 702 cm⁻¹; HRMS-ESI: m/z [M+Na]⁺ calcd for C₁₈H₂₂N₂O₂: 321.1579; found: 321.1573.

4.4.4. (3*S*,5*R*)-1-[(*R*)-2-Hydroxy-1-phenylethyl]-5-(2-methoxy-phenyl)-3-methylpyrrolidin-2-one 2d. Major diastereomer: Yellow oil; $[\alpha]_D^{25} = +46$ (*c* 1.2, CH₂Cl₂); ¹H NMR: δ 7.23 (m, 4H), 7.08 (m, 3H), 6.86 (t, 1H, J = 7.4 Hz), 6.77 (d, 1H, J = 8.0 Hz), 5.09 (dd, 1H, J = 5.2, 7.7 Hz), 5.64 (d, 1H, J = 7.0 Hz), 3.82 (m, 2H), 3.70 (s, 3H), 2.98–2.80 (m, 2H), 2.12 (dd, 1H, J = 10.0, 12.7 Hz), 1.95 (dt, 1H, J = 9.2, 12.7 Hz), 1.25 (d, 3H, J = 7.0 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 180.1, 156.6, 136.6, 129.6, 129.1, 128.6, 128.3, 127.7, 120.4, 110.7, 63.6, 60.1, 55.1, 36.2, 35.8, 16.7, 2C are missing; IR (film): v_{max} 3403, 2963, 2932, 1668, 1492, 1464, 1244, 1026, 755 cm⁻¹; HRMS-ESI: m/z [M+H]⁺ calcd for C₂₀H₂₄NO₃: 326.1756; found: 326.1753.

4.4.5. (3*S*,5*R*)-1-[(*R*)-2-Hydroxy-1-phenylethyl]-5-isopropyl-3-methylpyrrolidin-2-one 2e. Major diastereomer: Yellow oil; $[\alpha]_D^{25} = +24.5$ (*c* 0.3, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.34 (m, 5H), 4.69 (dd, 1H, *J* = 4.4, 7.6 Hz), 4.23 (td, 1H, *J* = 7.9, 11.2 Hz), 4.08 (td, 1H, *J* = 3.7, 11.2 Hz), 3.87 (dd, 1H, *J* = 4.3, 7.7 Hz), 3.33 (dm, 1H, *J* = 9.2 Hz), 2.62 (m, 1H), 2.06 (dd, 1H, *J* = 9.5, 12.2 Hz), 1.23 (d, 3H, *J* = 7.1 Hz), 0.77 (d, 3H, *J* = 6.9 Hz), 0.61 (d, 3H, *J* = 6.7 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 179.7, 137.6, 128.6, 128.0, 127.7, 64.9, 64.6, 62.5, 36.9, 30.3, 27.8, 19.2, 17.3, 14.5; IR (film): ν_{max} 3395, 2963, 1661, 1451, 1065, 755, 701 cm⁻¹; HRMS-ESI: *m/z* [M+H]⁺ calcd for C₁₆H₂₄NO₂: 262.1807; found: 262.1804.

4.4.6. 1-(2-Hydroxyethyl)-3-methyl-5-phenylpyrrolidin-2-one 2f. Yellow oil; major isomer: ¹H NMR (250 MHz, CDCl₃): δ 7.27 (m, 3H), 7.10 (dd, 2H, J = 2.0, 8.1 Hz), 4.65 (t, 1H, J = 6.1 Hz), 3.58 (m, 4H), 2.88 (m, 1H), 2.65 (m, 1H), 2.09 (m, 2H), 1.18 (d, 3H, J = 7.2 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 161.5, 140.8, 128.9, 127.9, 127.1, 126.2, 61.6, 60.7, 44.9, 37.3, 35.2, 16.3; HRMS- ESI: $m/z [M+H]^+$ calcd for C₁₃H₁₈NO₂: 220.1338; found: 220.1342.

4.4.7. 1-(2-Hydroxyethyl)-5-(2-methoxyphenyl)-3-methylpyrrolidin-2-one 2g. Yellow oil; major isomer: ¹H NMR: δ 7.28 (dt, 1H, J = 1.9, 7.5 Hz), 6.97 (m, 3H), 5.04 (dd, 1H, J = 4.8, 6.7 Hz), 3.72–3.58 (m, 3H), 3.01 (m, 2H), 2.66 (hex, 1H, J = 7.8 Hz), 2.13 (m, 2H), 1.23 (d, 3H, J = 7.1 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 180.2, 156.9, 128.8, 128.4, 126.1, 120.5, 110.7, 61.1, 56.4, 55.3, 45.6, 36.0, 35.1, 16.2; IR (film): v_{max} 3403, 2965, 2933, 1668, 1491, 1463, 1243, 755 cm⁻¹; MS-ESI: m/z [M+H]⁺: 249.

4.4.8. (*E*)-1-(2-Hydroxyethyl)-3-methyl-5-styrylpyrrolidin-2one 2h. Yellow oil; major isomer: ¹H NMR (250 MHz, CDCl₃): δ 7.40–7.26 (m, 5H), 6.54 (d, 1H, *J* = 15.8 Hz), 6.04 (dd, 1H, *J* = 8.6, 15.8 Hz), 4.25 (dt, 1H, *J* = 3.8, 8.2 Hz), 3.73 (t, 1H, *J* = 5.1 Hz), 3.60 (m, 1H), 3.22 (td, 1H, *J* = 4.0, 14.8 Hz), 2.67 (hex, 1H, *J* = 7.6 Hz), 2.13 (ddd, 1H, *J* = 3.9, 8.5, 12.8 Hz), 2.00 (dt, 1H, *J* = 4.5, 8.0 Hz), 1.24 (d, 3H, *J* = 7.2 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 179.2, 135.7, 134.2, 132.8, 128.6, 128.1, 126.5, 61.2, 60.4, 44.7, 35.4, 34.8, 16.3; IR (film): v_{max} 3389, 2967, 2932, 1668, 1456, 753 cm⁻¹; MS-ESI: *m*/*z* [M+H]⁺: 245.

4.5. (3S,5R)-3-Methyl-5-phenylpyrrolidin-2-one trans-3

A solution of **2a** (210 mg, 0.71 mmol) and thionvl chloride (165 mg, 1.4 mmol) in CH₂Cl₂ (3 mL) was stirred at rt for 2 h. The solvent and the excess of thionyl chloride was removed under vacuum. The residue was dissolved in CH₃CN (3 mL) and DBU (0.34 mL, 2.3 mmol) was added and the resulting mixture stirred overnight. The solvent was removed under vacuum and the residue dissolved in CH₂Cl₂ (2 mL). A solution of HCl (5 M, 0.8 mL) was added and the resulting mixture stirred vigorously for 30 min at rt. The layers were separated and the aqueous layer was extracted with $CH_2Cl_2^-$ (3 × 3 mL). The organic layers were combined, dried over Na₂SO₄, and concentrated to give the lactam 3-trans, as white needles, after column chromatography on silica gel using a mixture of petroleum ether/AcOEt as solvent. Mp 139 °C, $[\alpha]_{D}^{25} = +39 \ (c \ 0.5, \ CH_2Cl_2); \ ^1H \ NMR \ (250 \ MHz, \ CDCl_3): \delta \ 7.30 \ (m, \ 5H), \ 6.95, \ (br \ s, \ 1H), \ 4.73 \ (dd, \ 1H, \ J = 5.9, \ (dd, \ 1H), \ (dd, \ 1H) \ (d$ 6.3 Hz), 2.61 (hex, 1H, J = 7.2 Hz), 2.21 (m, 2H), 1.23 (d, 3H, J = 7.2 Hz).

4.6. General procedure for the preparation of carbamates 4a-l

To a solution of amine and DMAP (12 mg, 0.1 mmol) in CH_2Cl_2 (3 mL) was added dropwise a solution of $(Boc)_2O$ (275 mg, 1.25 mmol) in CH_2Cl_2 (2 mL) at rt. The reaction mixture was then stirred for 4 h at rt and quenched by adding water (2 mL). The aqueous layer was extracted with dichloromethane (3 × 5 mL), the organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether/AcOEt as eluant to give the corresponding carbamate **4**.

4.6.1. *tert*-Butyl 4-methoxyphenyl(1-phenylbut-3-enyl)carbamate 4a. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.27 (m, 3H), 7.20 (m, 2H), 6.70 (m, 4H), 5.88 (dddd, J = 6.1, 6.7, 10.2, 17.1 Hz, 1H), 5.71 (dd, J = 6.9, 9.0 Hz, 1H), 5.19 (dm, J = 17.1 Hz, 1H), 5.14 (dm, J = 10.2 Hz, 1H), 3.75 (s, 3H), 2.68 (m, 2H), 1.38 (s, 9H); ¹³C NMR (62.5 MHz, CDCl₃): δ 27.3, 35.0, 55.2, 60.8, 84.3, 113.6, 117.9, 128.0, 128.2, 128.5, 130.4, 134.3, 138.4, 147.8, 149.8, 159.1; IR (film): v_{max} 2980, 1775, 1733, 1512, 1219, 1148 cm⁻¹.

4.6.2. *tert*-Butyl 1-phenylbut-3-enyl(propyl)carbamate **4d.** Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.30 (m, 5H), 5.82 (tdd, 1H, J = 6.7, 10.2, 17.1 Hz), 5.71 (br m, 1H), 5.19 (dd, 1H, J = 1.4, 17.1 Hz), 5.06 (dm, 1H, J = 10.2 Hz), 2.88 (m, 2H), 2.72 (m, 2H), 1.38 (s, 9H), 1.20 (br m, 2H), 0.68 (t, 3H, J = 7.4 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 155.9, 140.5, 135.1, 128.1, 127.7, 127.1, 117.0, 79.2, 35.5, 28.4, 22.6, 11.4, 1C is missing; MS-ESI: m/z [M+H]⁺: 289.

4.6.3. *tert*-Butyl benzyl(1-phenylbut-3-enyl)carbamate **4e.** Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.38– 7.02 (m, 5H), 5.72 (m, 1H), 5.49 (br m, 1H), 5.04–4.97 (m, 2H), 4.31 (br m, 1H), 4.07 (d, 1H, J = 14.9 Hz), 3.76 (s, 3H), 2.65 (dd, 2H, J = 7.0, 7.5 Hz), 1.39 (br s, 9H), ¹³C NMR (62.5 MHz, CDCl₃): δ 156.1, 140.0, 139.6, 135.1, 128.3, 128.0, 127.4, 126.5, 117.1, 80.0, 36.0, 28.5, 4C are missing; MS-ESI: m/z [M+H]⁺: 338.

4.6.4. *tert*-Butyl 4-methoxybenzyl(1-phenylbut-3-enyl)carbamate 4f. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.28 (m, 5H), 6.98 (br s, 2H), 6.74 (d, J = 8.3 Hz, 2H), 5.71 (tdd, J = 6.7, 10.3, 17.2 Hz, 1H), 5.36 (br m, 1H), 4.99 (br d, J = 17.2 Hz, 1H), 4.98 (br d, J = 10.3 Hz, 1H), 4.28 (br s, 1H), 4.00 (d, J = 15.5 Hz, 1H), 3.76 (s, 3H), 2.64 (t, J = 7.0 Hz, 2H), 1.41 (br s, 9H); ¹³C NMR: δ 158.3, 156.1, 140.1, 135.2, 131.7, 128.8, 128.2, 128.1, 127.3, 117.1, 113.4, 79.9, 58.7, 55.2, 46.9, 35.9, 28.4; IR (film) *v*: 2977, 2932, 1684, 1513, 1247, 1163 cm⁻¹; MS-ESI: *m*/*z* [M+H]⁺: 367.

4.6.5. *tert*-Butyl benzyl(1-(4-methoxyphenyl)but-3-enyl)carbamate 4g. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.20 (m, 5H), 7.06 (br m, 2H), 6.82 (d, 2H, J = 8.5 Hz), 5.84–5.60 (m, 1H), 5.45 (br m, 1H), 4.99 (br d, 1H, J = 18.2 Hz), 4.97 (br d, 1H, J = 10.1 Hz), 4.30 (br m, 1H), 4.05 (d, 1H, J = 15.8 Hz), 3.75 (s, 3H), 2.61 (dd, 2H, J = 6.7, 7.4 Hz), 1.39 (br s, 9H); ¹³C NMR: δ 158.7, 156.0, 139.6, 135.1, 131.8, 129.2, 127.8, 127.1, 126.4, 116.9, 113.5, 79.7, 57.7, 55.0, 47.0, 36.0, 28.2; IR (film): v_{max} 2976, 2932, 1685, 1513, 1250, 1161 cm⁻¹; MS-ESI: m/z [M+H]⁺: 367.

4.6.6. *tert*-Butyl 4-methoxybenzyl[1-(2-methoxyphenyl)but-3-enyl]carbamate 4h. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.30–6.65 (br m, 8H), 5.71 (br m, 1H), 5.49 (br s, 1H), 4.91–5.04 (br m, 2H), 4.13 (br s, 2H), 3.75 (br s, 3H), 3.73 (br s, 3H), 2.60 (br s, 2H), 1.47 (br s, 9H); ¹³C NMR (62.5 MHz, CDCl₃): δ 158.1, 157.9, 135.6, 132.1, 128.7, 128.4 (br signal), 127.5, 119.8, 116.7, 113.1, 110.2, 55.2, 55.1, 46.8, 28.4; MS-ESI: *m/z* [M+H]⁺: 397. **4.6.7.** *tert*-Butyl benzyl[1-(furan-2-yl)but-3-enyl]carbamate **4i.** Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.00–7.26 (br m, 6H), 6.26–6.04 (br m, 2H), 5.81–5.50 (br m, 1.5H), 5.20–4.92 (br m, 2.5H), 4.31 (br m, 1H), 4.17 (d, J = 15.8 Hz, 1H), 2.57 (br s, 2H), 1.47–1.33 (s, 9H); ¹³C NMR (62.5 MHz, CDCl₃): δ 155.6, 153.1, 141.6, 139.4, 134.1, 127.7, 126.5, 126.2, 117.3, 109.8, 79.8, 52.4, 46.9, 35.5, 28.1; IR (film): v_{max} 2977, 2931, 1699, 1454, 1164, 735 cm⁻¹; MS-ESI: m/z [M+H]⁺: 327.

4.6.8. *tert*-Butyl benzyl[1-(4-fluorophenyl)but-3-enyl]carbamate 4j. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.10 (m, 5H), 6.96 (br m, 2H), 6.83 (t, 2H, J = 7.7 Hz), 5.60 (br m, 1H), 5.28 (br m, 1H), 4.92 (br m, 2H), 4.20 (br m, 1H), 4.02 (d, 1H, J = 15.7 Hz), 2.54 (m, 2H), 1.30 (s, 9H); ¹³C NMR (62.5 MHz, CDCl₃): δ 161.9 (d, J = 245 Hz), 155.9, 137.5 (d, J = 225 Hz), 134.8, 129.7, 127.9, 127.2, 126.6, 117.3, 114.9 (d, J = 21 Hz), 80.0, 57.9, 47.4, 35.9, 28.2; IR (film): v_{max} 2977, 2930, 1685, 1511, 1226, 1157 cm⁻¹; ¹⁹F NMR: δ –115.3 (br m); MS-ESI: m/z [M+H]⁺: 355.

4.6.9. *tert*-**Butyl** benzyl(2-methylhex-5-en-3-yl)carbamate **4k.** Yellow oil; obtained as a mixture of two rotamers: ¹H NMR (250 MHz, CDCl₃): δ 7.26 (m, 5H), 5.66 (m, 0.5H), 5.51 (m, 0.5H), 4.99–4.85 (m, 2H), 4.35 (s, 1H), 4.24 (s, 1H), 3.77 (br m, 0.5H), 2.34 (br m, 0.5H), 1.84 (br m, 1H), 1.50 (s, 4.5H), 1.36 (s, 4.5H), 0.90 (br m, 3H), 0.81 (d, J = 6.2 Hz, 1.5H), 0.71 (d, J = 5.1 Hz, 1.5H); ¹³C NMR (62.5 MHz, CDCl₃): δ 156.5, 156.0, 139.6, 139.1, 135.9, 135.8, 128. 4, 127.9, 127.8, 127.4, 126.6, 126.4, 116.1 (2C), 79.3, 79.1, 64.2, 62.8, 48.5, 48.4, 35.5, 34.8, 31.4, 30.9, 28.3, 28.1, 20.6 (2C), 20.2, 20.0; IR (film): v_{max} 2975, 2873, 1684, 1365, 1166, 701 cm⁻¹; MS-ESI: m/z [M+H]⁺: 301.

4.6.10. *tert*-**Butyl benzyl(non-1-en-4-yl)carbamate 4l.** Yellow oil; $[\alpha]_D^{25} = -11.9$ (*c* 1, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.26 (m, 5H), 5.67 (br m, 1H), 4.95 (br m, 2H), 4.37 (br s, 0.9H), 4.26 (br s, 1.1H), 4.14 (br t, 0.55H, J = 6.5 Hz), 3.75 (br s, 0.45H), 2.15 (m, 2H), 1.52–1.08 (br m, 17H), 0.75 (t, J = 6.6 Hz, 3H); ¹³C NMR (62.5 MHz, CDCl₃): δ 154.0, 136.4, 136.2, 128.5, 127.5, 127.0, 117.0, 79.8, 56.6, 47.7, 47.6, 39.0, 38.6, 33.7, 33.1, 32.1, 29.0, 28.8, 26.7, 23.0, 14.4; IR (film): v_{max} 2983, 2869, 1686, 1361, 1162, 709 cm⁻¹; HRMS-ESI: m/z [M+H]⁺ calcd for C₂₁H₃₃NO₂: 331.2511; found: 331.2515.

4.7. (*E*)-tert-Butyl 1,4-diphenylbut-3-enyl(4-methoxybenzyl)carbamate 4m

A mixture of *N*-(4-methoxybenzyl)-1-phenylbut-3-en-1amine (2.67 g, 10 mmol), iodobenzene (2.45 g, 12 mmol), and anhydrous NaHCO₃ (2.52 g, 30 mmol) and Pd(OAc)₂ (224 mg, 1 mmol) in acetonitrile (20 mL) was heated to reflux overnight. Water (10 mL) was added and the aqueous layer extracted with AcOEt (2×10 mL). The organic layers were combined, dried over MgSO₄, filtered, and concentrated under vacuum. Boc₂O (2.6 g, 10 mmol) and DMAP (50 mg, 0.4 mmol) and CH₂Cl₂ (20 mL) were added to the crude mixture, and the reaction was stirred for 4 h at rt. This solution was washed with an aqueous solution of HCl (1 M, 5 mL). The aqueous layer was extracted with AcOEt $(2 \times 5 \text{ mL})$. The organic layers were combined, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether/AcOEt as solvent to give **4m** as a yellow oil. ¹H NMR (250 MHz, CDCl₃): δ 7.24 (m, 10H), 7.00 (br m, 2H), 6.73 (d, 2H, J = 8.3 Hz), 6.25 (d, 1H, J = 16.0 Hz), 6.04 (br m, 1H), 5.43 (br m, 1H), 4.31 (br m, 1H), 4.06 (d, 1H, J = 15.4 Hz), 3.75 (s, 3H), 2.64–2.90 (m, 2H), 1.40 (s, 9H); ¹³C NMR (62.5 MHz, CDCl₃): δ 158.3, 156.1, 140.3, 137.4, 132.0, 131.6, 128.5, 128.3 (2C), 127.9, 127.0, 126.9, 126.0, 113.4, 55.1, 47.3, 35.4, 28.3.

4.8. Preparation of pyrrolidinone 5

4.8.1. 1-(4-Methoxyphenyl)-3-methyl-5-phenylpyrrolidin-2one 5a. Obtained as a 1.5:1 mixture of diastereomers according to procedure B. Minor diastereomer: ¹H NMR (250 MHz, CDCl₃): δ 7.40 (d, 2H, J = 9.0 Hz), 7.32–7.19 (m, 5H), 6.78 (d, 2H, J = 9.0 Hz), 5.12 (dd, 1H, J = 4.0, 6.8 Hz), 3.73 (s, 3H), 2.84 (qt, 1H, J = 7.1, 9.1 Hz), 2.25 (dd, 1H, J = 3.9, 9.1 Hz), 2.23 (d, 1H, J = 9.1 Hz), 1.30 (d, 3H, J = 7.1 Hz); ¹³C NMR: δ 177.0, 156.5, 141.3, 131.8, 128.9, 127.6, 125.8, 123.0, 113.9, 61.9, 55.3, 37.8, 35.7, 15.9. Major diastereomer: ¹H NMR: δ 7.24–7.19 (m, 7H), 6.74 (d, 2H, J = 9.1 Hz), 5.08 (dd, 1H, J = 6.9, 8.9 Hz), 3.69 (s, 3H), 2.85-2.64 (m, 2H), 1.64 (ddd, 1H, J = 2.7, 8.5, 17.4 Hz), 1.36 (d, 3H), J = 7.1 Hz);¹³C NMR (62.5 MHz, CDCl₃): δ 177.2, 156.7, 141.3, 131.0, 128.7, 127.6, 126.6, 124.7, 113.8, 62.2, 55.2, 38.9, 37.5, 16.6; IR (film): v_{max} 1694, 1512, 1248 cm⁻¹; HRMS-ESI: m/z $[M+H]^+$ calcd for C₁₈H₂₀NO₂: 282.1494; found: 282.1500.

4.8.2. 1-Benzyl-3-methyl-5-phenylpyrrolidin-2-one 5b. Obtained according to procedure B using **4e** as starting material. Yellow oil. Major isomer (3*RS*,5*RS*)-: ¹H NMR (250 MHz, CDCl₃): δ 7.36 (d, 2H, J = 7.3 Hz), 7.24 (m, 4H), 7.14 (d, 2H, J = 7.7 Hz), 7.01 (dd, 2H, J = 2.9, 6.4 Hz), 5.08 (d, 1H, J = 14.5 Hz), 4.27 (dd, 1H, J = 8.3, 7.2 Hz), 3.48 (d, 1H, J = 14.5 Hz), 2.67–2.49 (m, 2H), 1.53 (td, 1H, J = 8.4, 5.7 Hz), 1.33 (d, 3H, J = 6.5 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 178.3, 140.9, 136.8, 129.3, 129.1, 128.9, 128.5, 127.8, 127.7, 126.9, 60.3, 44.9, 38.7, 37.3, 35.7, 16.9; IR (film): v_{max} 3466, 2930, 1691, 1455, 1241, 700 cm⁻¹; HRMS-ESI: m/z [M+H]⁺ calcd for C₁₈H₂₀NO: 266.1545; found: 266.1542.

4.8.3. (*3RS*,*5RS*)-3-Methyl-1-propyl-5-phenylpyrrolidin-2one 5d. Obtained according to procedure B. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.22–7.41 (m, 5H), 4.52 (dd, 1H, *J* = 8.9, 6.6 Hz), 3.59 (dt, 1H) , *J* = 8.4, 6.0 Hz, 2.53 (m, 3H), 1.32–1.53 (m, 3H), 1.28 (d, 3H, *J* = 6.8 Hz), 0.78 (t, 3H, *J* = 7.3 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 178.0, 141.0, 129.0, 128.2, 127.2, 60.7, 42.3, 38.7, 36.9, 20.1, 16.5, 11.4; IR (film): ν_{max} 2965, 2932, 2874, 1690, 1456, 1418, 702 cm⁻¹; HRMS-ESI: *m/z* [M+H]⁺ calcd for C₁₄H₂₀NO: 218.1545; found: 218.1546.

4.8.4. 1-(4-Methoxybenzyl)-3-methyl-5-phenylpyrrolidin-2one **5f.** Obtained according to procedure B. Yellow oil; Major isomer (3RS,5RS): ¹H NMR (250 MHz, CDCl₃): δ 7.35 (m, 4H), 6.95 (d, 2H, J = 8.8 Hz), 6.78 (d, 2H, $J = 8.8 \text{ Hz}, 5.05 \text{ (d, 1H, } J = 14.4 \text{ Hz}, 4.25 \text{ (dd, 1H, } J = 8.5, 7.1 \text{ Hz}, 3.78 \text{ (s, 3H)}, 3.44 \text{ (d, 1H, } J = 14.4 \text{ Hz}), 2.54 \text{ (m, 2H)}, 1.52 \text{ (dt, 1H, } J = 12.2, 9.7 \text{ Hz}), 1.31 \text{ (t, 3H, } J = 6.8 \text{ Hz}; ^{13}\text{C}$ NMR (62.5 MHz, CDCl₃): δ 177.7, 159.5, 136.5, 132.2, 128.7, 128.6, 128.4, 127.4, 114.2, 59.3, 55.3, 44.3, 38.4, 36.9, 16.4; IR (film): v_{max} 2964, 2932, 1688, 1513, 1248, 1176, 1033 cm⁻¹; HRMS-ESI: m/z [M+H]⁺ calcd for C₁₉H₂₂NO₂: 296.1651; found: 296.1646.

4.8.5. (*3RS*,5*RS*)-1-Benzyl-5-(4-methoxyphenyl)-3-methylpyrrolidin-2-one 5g. Obtained according to procedure B. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.21 (m, 3H), 7.04–6.97 (m, 4H), 6.87 (dd, 2H, J = 8.6, 2.0 Hz), 5.01 (d, 1H, J = 14.5 Hz), 4.20 (t, 1H, J = 6.9 Hz), 3.79 (s, 3H), 3.44 (d, 1H, J = 14.5 Hz), 2.57–2.46 (m, 2H), 1.49 (ddt, 1H, J = 8.5, 8.5, 6.1, 2.1 Hz), 1.30 (d, 3H, J = 6.7 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 177.7, 159.5, 136.6, 132.2, 128.8, 128.5, 127.4, 114.3, 59.4, 55.3, 44.4, 38.4, 37.0, 16.5; IR (film): v_{max} 3458, 2932, 2873, 1687, 1513, 1248, 1033 cm⁻¹.

4.8.6. 1-(4-Methoxybenzyl)-5-(2-methoxyphenyl)-3-methylpyrrolidin-2-one 5h. Obtained according to procedure B. Yellow oil; (3*RS*,5*RS*)-isomer: ¹H NMR (250 MHz, CDCl₃): δ 7.28 (m, 1H), 7.12–6.85 (m, 5H), 6.76 (d, 2H, J = 8.7 Hz), 4.98 (d, 1H, J = 14.4 Hz), 4.73 (t, 1H, J = 7.0 Hz), 3.77 (s, 3H), 3.72 (s, 3H), 3.48 (d, 1H, J = 14.4 Hz), 2.56 (m, 2H), 1.54 (m, 1H), 1.25 (d, 3H, J = 6.6 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 177.9, 158.8, 157.3, 130.0, 128.8, 128.5, 120.8, 113.6, 110.9, 55.25, 55.2, 44.0, 36.9, 35.9, 35.8, 16.8, 2C are missing; IR (film): v_{max} 2932, 1683, 1513, 1245 cm⁻¹; HRMS-ESI: m/z [M+H]⁺ calcd for C₂₀H₂₄NO₃: 326.1756; found: 326.1763.

4.8.7. (3*RS*,5*RS*)-1-Benzyl-5-(furan-2-yl)-3-methylpyrrolidin-2-one 5i. Obtained according to procedure B. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.39 (s, 1H), 7.25 (m, 3H), 7.12 (d, 2H, J=7.3 Hz), 6.34 (td, 1H, J=1.7, 4.8 Hz), 6.21 (d, 1H, J=3.1 Hz), 4.94 (d, 1H, J=14.7 Hz), 4.43 (dd, 1H, J=7.1, 8.1 Hz), 3.58 (d, 1H, J=14.7 Hz), 2.53 (m, 2H), 1.87 (td, J=8.7, 12.0 Hz, 1H), 1.34 (d, 3H, J=6.7 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 177.5, 152.4, 143.4, 137.1, 128.9, 128.8, 127.8, 110.7, 109.8, 53.5, 45.1, 36.9, 33.7, 17.0; IR (film): v_{max} 2973, 2932, 1699 cm⁻¹; HRMS-ESI: m/z [M+H]⁺ calcd for C₁₆H₁₈NO₂: 256.1338; found: 256.1342.

4.8.8. (*3RS*,*5RS*)-5-(4-Fluorophenyl)-3-methyl-1-phenylpyrrolidin-2-one 5j. Obtained according to procedure B. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.17 (m, 3H), 7.09–6.86 (m, 4H), 4.98 (d, 2H, J = 14.4 Hz), 4.18 (dd, 1H, J = 7.0, 8.5 Hz), 3.39 (d, 1H, J = 14.5 Hz), 2.50 (m, 2H), 1.41 (m, 1H), 1.25 (d, 3H, J = 6.6 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 178.2, 164.9, 160.9, 136.7, 129.4, 129.0, 127.9, 116.4, 116.1, 59.7, 44.9, 38.8, 37.3, 16.9; ¹⁹F NMR (235 MHz, CDCl₃): δ –114.3 (tt, J = 8.2, 5.6 Hz); IR (film) v_{max} : 3444, 2931, 1691, 1511, 1407, 1225 cm⁻¹.

4.8.9. (*3RS*,5*RS*)-1-Benzyl-5-isopropyl-3-methylpyrrolidin-2-one 5k. Obtained according to procedure B. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.25 (m, 5H), 5.12 (d, 1H, J = 14.9 Hz), 3.79 (d, 1H, J = 14.9 Hz), 3.33 (ddd, 1H, J = 3.9, 7.3, 8.8 Hz), 2.47 (qt, 1H, J = 7.1, 9.1 Hz), 2.20–2.00 (m, 2H), 1.25 (d, 3H, J = 7.1 Hz), 1.25 (m, 1H), 0.81 (d, 3H, J = 6.9 Hz), 0.73 (d, 3H, J = 6.8 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 178.7, 137.0, 128.9, 128.5, 127.8, 59.4, 44.5, 36.5, 26.9, 26.8, 18.7, 16.8, 14.2; IR (film): v_{max} 2962, 2932, 1687, 1454, 1421, 701 cm⁻¹; HRMS-ESI: m/z [M+H]⁺ calcd for C₁₅H₂₂NO: 232.1701; found: 232.1705.

4.8.10. (*3R*,*5S*)-1-Benzyl-3-methyl-5-pentylpyrrolidin-2-one **51.** Obtained according to procedure B. Yellow oil; $[\alpha]_{25}^{25} = -22.5$ (*c* 0.5, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.30 (t, 2H, J = 7.1 Hz), 7.26 (t, 1H, J = 7.1 Hz), 7.21 (d, 2H, J = 6.9 Hz), 4.98 (d, 1H, J = 15.0 Hz), 3.99 (d, 1H, J = 15.0 Hz), 3.30 (m, 1H), 2.47 (qdd, 1H, J = 7.1, 9.9, 14.1 Hz), 2.35 (ddd, 1H, J = 6.7, 8.8, 12.4 Hz), 1.26 (d, 3H, J = 7.0 Hz), 1.21 (m, 8H), 0.86 (t, 3H, J = 6.9 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 178.3, 137.3, 128.9, 128.3, 127.7, 55.5, 44.6, 36.9, 34.4, 33.8, 32.2, 24.4, 22.9, 17.0, 14.9; IR (film): v_{max} 2930, 2859, 1688, 1454, 1418, 700 cm⁻¹; HRMS-ESI: m/z [M+H]⁺ calcd for C₁₇H₂₆NO: 260.2009; found: 260.2014.

4.8.11. (*3RS*,*5RS*)-3-Benzyl-1-(4-methoxybenzyl)-5-phenylpyrrolidin-2-one 5m. Obtained according to procedure B. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.35–7.15 (m, 10H), 6.94 (d, 2H, J = 8.7 Hz), 6.77 (d, 2H, J = 8.7 Hz), 5.02 (d, 1H, J = 14.3 Hz), 4.20 (dd, 1H, J = 7.3, 8.6 Hz), 3.77 (s, 3H), 3.40 (d, 1H, J = 14.3 Hz), 3.34 (dd, 1H, J = 9.2, 1.1 Hz), 2.87 (m, 2H), 2.76 (td, 2H, J = 2.8, 9.3 Hz), 2.37 (dt, 1H, J = 7.6, 13.0 Hz), 1.59 (ddd, 1H, J = 8.9, 9.8, 13.1 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 176.6, 159.3, 141.0, 139.7, 130.4, 129.5, 129.3, 128.9, 128.5, 127.6, 126.7, 114.2, 60.1, 55.6, 44.4, 44.3, 37.4, 35.6; IR (film): v_{max} 2931, 1686, 1611, 1512, 1409, 1247, 701 cm⁻¹; HRMS-ESI: m/z [M+H]⁺ calcd for C₂₅H₂₆NO₂: 372.1964; found: 372.1953.

4.9. General procedure for the preparation of amino alcohol 6

To a mixture of phenylglycinol-derived imine (3 mmol), zinc dust (0.49 g, 7.5 mmol), and CeCl₃·7H₂O (0.12 g, 0.5 mmol) in THF (15 mL), was added dropwise cinnamyl or crotylbromide (7.5 mmol) at 0 °C. The resulting mixture was stirred for 2 h and quenched with water (15 mL). The layers were separated and the aqueous layer extracted with Et₂O (3×10 mL). The organic layers were combined, dried over Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether/AcOEt as solvent to give the corresponding amino alcohol.

4.9.1. (*R*)-2-[(1*R*,2*R*)-2-Methyl-1-phenylbut-3-enylamino]-2phenylethanol 6a. Yellow oil; $[\alpha]_D^{25} = -23$ (*c* 1, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.30–7.08 (m, 10H), 5.68 (ddd, 1H, *J* = 7.8, 10.3, 17.3 Hz), 5.04 (dm, 1H, *J* = 10.3 Hz), 5.02 (dm, 1H, *J* = 17.3 Hz), 3.80–3.72 (m, 2H), 3.51 (dd, 1H, *J* = 7.5, 12.1 Hz), 2.61 (hex, 1H, *J* = 6.8 Hz), 2.35 (br s, 2H), 0.96 (d, 3H, *J* = 6.9 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 141.5, 141.3, 140.3, 128.4, 128.0, 127.8, 127.3, 127.0, 126.9, 115.3, 65.0, 64.3, 60.8, 42.7, 16.6; IR (film): v_{max} 3386, 1453, 1028, 758, 700 cm⁻¹; HRMS-ESI: $m/z \text{ [M+H]}^+$ calcd for C₁₇H₂₃N₂O: 281.

4.9.2. (*R*)-2-[(2*R*,3*R*)-1-(Benzyloxy)-3-phenylpent-4-en-2-ylamino]-2-phenylethanol 6b. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.26 (m, 15H), 6.05 (ddd, 1H, J = 9.5, 10.1, 17.0 Hz), 5.14 (dm, 1H, J = 17.0 Hz), 5.11 (dm, 1H, J = 10.1 Hz), 4.21 (s, 2H), 3.61 (t, 1H, J = 8.5 Hz), 3.56 (dd, 1H, J = 4.3, 9.2 Hz), 3.44 (m, 2H), 3.27 (dd, 1H, J = 4.2, 9.1 Hz), 3.22 (dd, 1H, J = 4.0, 9.4 Hz), 2.99 (ddd, 1H, J = 3.7, 4.6, 8.3 Hz), 1.79 (br s, 2H); ¹³C NMR (62.5 MHz, CDCl₃): δ 142.8, 138.8, 129.0, 128.9, 128.7, 128.5, 128.0, 127.9, 127.4, 126.9, 117.3, 73.4, 70.1, 66.9, 63.9, 60.6, 53.2; IR (film): v_{max} 3395, 3028, 2864, 1495, 1453, 700 cm⁻¹.

4.9.3. 2-(1,2-Diphenylbut-3-enylamino)ethanol 6c. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.18 (m, 5H), 5.71 (ddd, 1H, J = 8.0, 10.2, 17.0 Hz), 4.77 (dm, 1H, J = 10.2 Hz), 4.64 (dm, 1H, J = 17.0 Hz), 3.79 (d, 1H, J = 9.2 Hz), 3.46 (dd, 1H, J = 8.3, 8.8 Hz), 3.35–3.17 (m, 2H), 2.41 (dd, 1H, J = 4.7, 12.7 Hz), 2.33 (dd, 1H, J = 4.7, 12.7 Hz), 2.33 (dd, 1H, J = 4.7, 12.7 Hz), 2.07 (br s, 2H); ¹³C NMR (62.5 MHz, CDCl₃): δ 141.5, 141.3, 138.6, 128.7, 128.25, 128.2, 128.1, 127.3, 126.8, 116.4, 67.1, 60.8, 57.3, 48.7; IR (film): ν_{max} 3328, 3027, 2921, 1493, 1453, 1055, 756, 701 cm⁻¹; HRMS-ESI: m/z [M+H]⁺ calcd for C₁₈H₂₂NO: 268.1701; found: 268.1709.

4.9.4. (*R*)-2-[(3*S*,4*R*)-2-Methyl-4-phenylhex-5-en-3-ylamino]-2-phenylethanol 6d. Yellow oil; $[\alpha]_D = -123$ (*c* 0.5, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.34 (m, 8H), 7.15 (dd, 2H, *J* = 1.8, 7.8 Hz), 5.96 (td, 1H, *J* = 9.9, 17.0 Hz), 5.09 (dm, 1H, *J* = 17.0 Hz), 5.06 (dm, 1H, *J* = 10.0 Hz), 3.42 (t, 1H, *J* = 8.9 Hz), 3.35–3.24 (m, 3H), 2.68 (dd, 1H, *J* = 3.2, 8.2 Hz), 1.84 (hept d, 1H, *J* = 3.1, 6.9 Hz), 0.85 (d, 3H, *J* = 6.8 Hz), 0.66 (d, 3H, *J* = 6.7 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 143.6, 141.5, 139.9, 128.5, 128.3, 128.2, 127.7, 127.4, 126.5, 115.5, 66.7, 63.9, 63.2, 55.6, 29.7, 21.0, 15.9.

4.9.5. (*R*)-2-[(1*R*,2*R*)-1-(Furan-2-yl)-2-phenylbut-3-enylamino]-2-phenylethanol 6e. Yellow oil; $[\alpha]_D^{25} = -15$ (*c* 0.5, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.35–7.15 (m, 9H), 7.05 (d, 2H, *J* = 7.7 Hz), 6.14 (dd, 1H, *J* = 1.8, 3.1 Hz), 5.97 (ddd, 1H, *J* = 8.4, 10.4, 18.8 Hz), 5.91 (m, 1H), 5.00 (dm, 1H, *J* = 10.4 Hz), 4.97 (dm, 1H, *J* = 18.8 Hz), 3.96 (d, 1H, *J* = 8.7 Hz), 3.74 (t, 1H, *J* = 8.5 Hz), 3.58 (m, 2H), 3.35 (td, 1H, *J* = 3.6, 9.3 Hz), 1.99 (br s, 1H); ¹³C NMR (62.5 MHz, CDCl₃): δ 154.5, 141.8, 141.5, 141.3, 138.1, 128.7, 128.4, 128.2, 127.3, 127.0, 126.9, 117.0, 109.9, 108.2, 65.3, 62.4, 59.4, 55.2; IR (film): v_{max} 3332, 3028, 1453, 1071, 756, 700 cm⁻¹.

4.10. General procedure for the preparation of pyrrolidinone 7

4.10.1. (*R*)-3-[(1*R*,2*S*)-2-Methyl-1-phenylbut-3-enyl]-4-phenyloxazolidin-2-one 7a. Obtained according to procedure A. Yellow solid; mp 76 °C; $[\alpha]_D^{25} = -5.5$ (*c* 1.4, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.37 (m, 4H), 7.27 (m, 6H), 5.38 (ddd, 1H, J = 7.6, 10.2, 17.0 Hz), 4.77 (dm, 1H,

J = 17.0 Hz), 4.75 (dm, 1H, J = 10.2 Hz), 4.59 (dm, 1H, J = 11.8 Hz), 4.42 (dd, 1H, J = 8.0, 8.9 Hz), 4.31 (dd, 1H, J = 7.2, 8.9 Hz), 4.11 (dd, 1H, J = 7.2, 8.0 Hz), 2.53 (qdd, 1H, J = 6.5, 7.6, 11.8 Hz), 1.14 (d, 3H, J = 6.5 Hz); 1³C NMR (62.5 MHz, CDCl₃): δ 158.8, 140.6, 138.6, 137.2, 129.6, 129.1, 128.8, 128.2, 128.0, 127.9, 115.2, 70.1, 64.5, 59.8, 38.1, 18.3; IR (film): v_{max} 2975, 2927, 1748, 1400, 1222, 1059, 707 cm⁻¹; HRMS-ESI: m/z [M+Na]⁺ calcd for C₂₀H₂₁NO₂Na: 330.1470; found: 330.1475.

4.10.2. (*R*)-3-[(2*R*,3*R*)-1-(Benzyloxy)-3-phenylpent-4-en-2yl]-4-phenyloxazolidin-2-one 7b. Obtained according to procedure A. Yellow oil; $[\alpha]_D^{25} = -102$ (*c* 1.3, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.32 (m, 9H), 7.15 (m, 4H), 7.01 (d, 2H, J = 7.2 Hz), 5.85 (ddd, 1H, J = 7.8, 10.1, 16.9 Hz), 5.06 (dd, 1H, J = 1.3, 16.9 Hz), 4.98 (dd, 1H, J = 1.3, 10.1 Hz), 4.47 (d, 1H, J = 11.5 Hz), 4.41 (d, 1H, J = 11.5 Hz), 4.14 (m, 1H), 4.12 (t, 1H, J = 8.4 Hz), 3.81 (t, 1H, J = 8.5 Hz), 3.75–3.63 (m, 4H); ¹³C NMR δ 158.6, 142.0, 138.9, 138.6, 137.7, 129.3, 128.8, 128.6, 128.4, 128.2, 127.6, 117.1, 73.5, 70.8, 69.5, 62.0, 58.3, 50.9; IR (film): v_{max} 3030, 2907, 2248, 1714, 1418, 1097 cm⁻¹.

4.10.3. (3*SR*,4*RS*,5*RS*)-3-(1,2-Diphenylbut-3-enyl)oxazolidin-2-one 7c. Obtained according to procedure A. Colorless oil; ¹H NMR (250 MHz, CDCl₃): δ 7.52–7.12 (m, 10H), 5.78 (ddd, 1H, *J* = 7.3, 10.4, 17.1 Hz), 5.36 (d, 1H, *J* = 12.1 Hz), 4.93 (dm, 1H, *J* = 10.4 Hz), 4.88 (dm, 1H, *J* = 17.1 Hz), 4.14 (ddm, 1H, *J* = 7.3, 12.1 Hz), 3.98 (ddd, *J* = 5.1, 8.4, 9.2 Hz, 1H), 3.77 (q, 1H, *J* = 8.5 Hz), 3.34 (ddd, *J* = 5.1, 8.0, 9.0 Hz, 1H), 3.23 (dd, 1H, *J* = 8.3, 17.4 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 157.5, 140.0, 138.2, 136.8, 128.75, 128.70, 128.4, 128.1, 127.8, 127.0, 117.2, 77.0, 61.6, 59.7, 50.5, 40.4; IR (film): *v*_{max} 3031, 2976, 1750, 1458, 1401; 1223, 1059, 706 cm⁻¹; HRMS-ESI: *m/z* [M+H]⁺ calcd for C₁₉H₂₀NO₂: 294.1494; found: 294.1500.

4.10.4. (*R*)-3-[(3*S*,4*R*)-2-Methyl-4-phenylhex-5-en-3-yl]-4-phenyloxazolidin-2-one 7d. Obtained according to procedure A. Yellow oil; mp 110 °C; $[\alpha]_D^{25} = -219$ (*c* 1, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.32 (m, 8H), 7.12 (m, 2H), 5.96 (ddd, 1H, J = 9.9, 10.0, 16.9 Hz), 5.16 (dm, 1H, J = 16.9 Hz), 5.02 (dm, 1H, J = 10.0 Hz), 4.19 (t, 1H, J = 10.1 Hz), 4.01 (dd, 1H, J = 8.0, 13.7 Hz), 3.94 (dd, 1H, J = 7.8, 13.7 Hz), 3.61 (dd, 1H, J = 7.8, 8.0 Hz), 3.15 (dd, 1H, J = 4.1, 10.8 Hz), 2.11 (m, 1H), 0.94 (d, 3H, J = 7.0 Hz), 0.66 (d, 3H, J = 6.8 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 158.1, 142.6, 139.1, 137.8, 129.0, 128.7, 128.6, 128.4, 128.0, 126.8, 116.2, 69.3, 64.4, 63.2, 50.8, 30.6, 21.7, 19.4; HRMS-ESI: m/z [M+H]⁺ calcd for C₂₂H₂₆NO₂: 336.1964; found: 336.1971.

4.11. *tert*-Butyl benzyl[(1*R*,2*R*)-1-(furan-2-yl)-2-phenylbut-3-enyl]carbamate 7e

To a solution of $Pb(OAc)_4$ (540 mg,1.2 mmol) in MeOH (5 mL) was added a solution of **6e** (333 mg, 1 mmol) in CH₂Cl₂ (5 mL) at 0 °C and the resulting mixture was stirred for 1 h. CH₂Cl₂ (10 mL) was added followed by water (10 mL). The layers were separated and the aqueous phase

was extracted with CH_2Cl_2 (3 × 10 mL). The organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was dissolved in MeOH (5 mL) then NaBH₄ (35 mg, 0.9 mmol) was added in small portions at 0 °C. The reaction was stirred for 1 h at rt and quenched by adding water (10 mL). The aqueous layer was extracted with Et_2O (3×15 mL), the organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under vacuum, to give the expected amino alcohol, which was used in the next step without purification: ¹H NMR (250 MHz, CDCl₃): δ 7.44–7.20 (m, 7H), 7.11 (dd, 2H, J = 2.0, 6.7 Hz), 7.03 (dd, 2H, J = 2.0, 7.9 Hz), 6.33 (dd, 1H, J = 1.8, 3.1 Hz), 6.17 (d, J = 3.1 Hz, 1H), 5.84 (ddd, 1H, J = 8.1, 10.3, 17.0 Hz), 4.90 (dm, 1H, J = 10.3 Hz), 4.85 (dm, 1H, J = 17.0 Hz), 3.91 (d, 1H, J = 9.3 Hz), 3.77 (d, 1H, J = 8.4 Hz), 3.69 (d, 1H, J = 13.8 Hz), 3.42 (d, 1H, J = 13.8 Hz), 1.66 (br s, 2H). To a solution of the crude amine and DMAP (12 mg, 0.1 mmol) in CH₂Cl₂ (3 mL) was added dropwise a solution of (Boc)₂O (275 mg, 1.25 mmol) in CH₂Cl₂ (2 mL) at rt. The reaction mixture was then stirred for 4 h at rt. and quenched by adding water (2 mL). The aqueous layer was extracted with dichloromethane $(3 \times 5 \text{ mL})$, the organic layers were combined, dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by column chromatography on silica gel using a mixture of petroleum ether/AcOEt as eluant to give 7e. $[\alpha]_D^{25} = +62$ (c 1.1, CH₂Cl₂); 4:1 mixture of rotamers, major isomer ¹H NMR (250 MHz, $\Omega = 16.1 \text{ Hz}$) 4.12 CDCl₃): δ 1.06 (s, 9H), 4.03 (d, 1H, J = 16.1 Hz), 4.12 (dd, 1H, J = 11.6, 7.2 Hz), 4.34 (d, 1H, J = 16.1 Hz), 4.93 (br d, 1H, J = 10.9 Hz), 4.94 (br d, 1H, J = 16.5 Hz), 5.94–5.80 (m, 2H), 6.26 (br s, 1H), 6.37 (br s, 1H), 6.67 (m, 2H), 6.67 (br m, 2H), 7.29 (m, 7H); ¹³C NMR (62.5 MHz, CDCl₃): δ 155.3, 152.7, 141.7, 140.3, 139.5, 138.6, 128.3 (2C), 127.6, 126.6, 126.3, 126.0, 116.4, 100.1, 109.1, 79.6, 55.6, 51.7, 47.6, 27.9; IR (film): v_{max} 2977, 1690, 1453, 1403, 1366, 1248, 1165 cm⁻¹; MS-ESI: m/z $[M+H]^+: 404.$

4.12. Preparation of pyrrolidinones 8

4.12.1. (3*S*,4*S*,5*R*)-1-[(*R*)-2-Hydroxy-1-phenylethyl]-3,4-dimethyl-5-phenylpyrrolidin-2-one 8a. Obtained according to procedure B. Yellow oil; $[\alpha]_D^{25} = -38$ (*c* 0.6, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.30 (m, 6H), 7.12 (m, 4H), 5.41 (dd, 1H, J = 8.0, 6.4 Hz), 4.13 (d, 1H, J = 8.3 Hz), 3.71 (m, 3H), 2.95 (br s, 1H), 2.41 (qd, J = 6.9, 13.7 Hz, 1H), 2.07 (qdd, 1H, J = 6.9, 8.2, 11.7 Hz), 1.19 (d, 3H, J = 6.9 Hz), 0.54 (d, 3H, J = 6.8 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 178.6, 138.3, 136.3, 128.5, 128.4 (3C), 128.0, 127.9, 63.7, 62.95, 62.9, 58.7, 41.9, 41.6, 14.2, 13.7; IR (film): v_{max} 3438, 29.64, 1454, 1421, 701 cm⁻¹.

4.12.2. (3*S*,4*R*,5*R*)-5-(Benzyloxymethyl)-1-[(*R*)-2-hydroxy-1-phenylethyl]-3-methyl-4-phenylpyrrolidin-2-one **8b**. Obtained according to procedure B. Yellow oil; $[\alpha]_D^{25} = -60$ (*c* 0.6, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.31 (m, 11H), 7.20 (d, 2H, *J* = 6.9 Hz), 7.11 (d, 2H, *J* = 7.7 Hz), 5.08 (dd, 1H, *J* = 4.5, 7.9 Hz), 4.24 (dd, 1H, *J* = 6.8, 12.0 Hz), 4.19 (m, 1H), 4.12 (dd, 1H, *J* = 4.6, 12.0 Hz), 3.92 (d, 1H, *J* = 11.2 Hz), 3.86 (d, 1H, *J* = 11.2 Hz), 3.52 (dm, 1H, J = 7.3 Hz), 3.33–3.29 (m, 2H), 3.18 (dd, 1H, J = 2.9, 10.4 Hz), 2.86 (d, 1H, J = 10.4 Hz), 1.19 (d, 3H, J = 6.4 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 178.8, 137.3, 137.1, 136.5, 128.6, 128.5, 128.4, 128.3, 127.8, 127.7, 127.7, 127.2, 73.1, 68.1, 64.0, 61.9, 60.7, 51.7, 39.8, 14.5; IR (film): v_{max} 3330, 1490, 1450, 1300, 1050, 705 cm⁻¹.

4.12.3. 1-(2-Hydroxyethyl)-3-methyl-4,5-diphenylpyrrolidin-2-one 8c. Obtained according to procedure B. Yellow oil; ¹H NMR (250 MHz, CDCl₃): δ 7.10 (m, 6H), 6.75 (m, 4H), 4.86 (d, 1H, J = 8.2 Hz), 3.80 (m, 3H), 3.61 (dd, 1H, J = 8.2, 11.7 Hz), 3.37 (br t, 1H J = 4.6 Hz), 3.14 (m, 1H), 2.96 (dd, 1H, J = 6.8, 11.4 Hz), 1.20 (d, 3H, J = 6.9 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 178.7, 136.3, 136.0, 128.3, 128.2, 128.0, 127.8, 127.1, 127.0, 67.2, 61.5, 53.8, 46.2, 38.8, 13.8.

4.12.4. (3*S*,4*S*,5*R*)-1-[(*R*)-2-Hydroxy-1-phenylethyl]-4-isopropyl-3-methyl-5-phenylpyrrolidin-2-one 8d. Obtained according to procedure B. White solid; mp 150 °C; $[\alpha]_{25}^{25} = -75$ (*c* 0.4, CH₂Cl₂); ¹H NMR (250 MHz, CDCl₃): δ 7.44–7.22 (m, 10H), 4.64 (dd, 1H, *J* = 4.1, 8.1 Hz), 4.37 (dt, 1H, *J* = 7.9, 11.3 Hz), 4.09 (td, 1H, *J* = 3.9, 15.1 Hz), 3.82 (dd, 1H, *J* = 4.1, 7.8 Hz), 3.65 (dd, 1H, *J* = 2.1, 8.4 Hz), 3.53 (dd, 1H, *J* = 8.4, 12.7 Hz), 3.26 (quint, 1H, *J* = 6.6 Hz), 1.59 (m, 1H), 1.24 (d, 3H, *J* = 6.7 Hz), 0.67 (d, 3H, *J* = 7.2 Hz), 0.37 (d, 3H, *J* = 7.1 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 179.3, 137.8, 136.7, 128.5, 128.5, 128.1, 127.6, 127.1, 70.4, 65.3, 65.0, 52.5, 39.0, 30.5, 19.1, 17.7, 14.7; HRMS-ESI: *m*/*z* [M+H]⁺ calcd for C₂₂H₂₈NO₂: 338.2120; found: 338.2116.

4.12.5. (3*S*,4*S*,5*R*)-1-Benzyl-5-(2-furyl)-4-phenylpyrrolidin-2-one 8e. Obtained and isolated according to procedure B as a mixture 4.5/1 of diastereomers as a pale yellow oil; $[\alpha]_D^{25} = -216$ (*c* 0.3, CH₂Cl₂); Main isomer: ¹H NMR (250 MHz, CDCl₃): δ 7.40–7.10 (m, 9H), 6.91 (dd, 2H, J = 1.8, 7.2 Hz), 6.15 (dd, 1H, J = 1.6, 3.2 Hz), 5.92 (d, 1H, J = 3.2 Hz), 5.17 (d, 1H, J = 14.8 Hz), 4.55 (d, 1H, J = 7.2 Hz), 3.63 (d, 1H, J = 14.8 Hz), 3.30–3.14 (m, 2H), 1.26 (d, 3H, J = 6.4 Hz); ¹³C NMR (62.5 MHz, CDCl₃): δ 176.5, 149.9, 142.5, 136.5, 128.7, 128.3, 128.1, 127.9, 127.6, 127.1, 110.1, 109.7, 58.6, 52.6, 45.0, 39.5, 14.2, 1C is missing; IR (film): v_{max} 2931, 1696, 1497, 1454, 1232, 755, 700 cm⁻¹; HRMS-ESI: m/z [M+H]⁺ calcd for C₁₂H₂₂NO₂: 332.1651; found: 332.1655.

Acknowledgment

We thank the CNRS and the Ministère de l'Education Nationale for their financial support.

References

- (a) O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435–446, and references cited therein; (b) Daly, J. W.; Spende, T. F.. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Wiley: New York, 1986; Vol. 4, Chapter 1.
- For review, see: Pichon, M.; Figadère, B. *Tetrahedron: Asymmetry* **1996**, *7*, 927–964; (a) Davis, F. A.; Song, M.; Augustine, A. J. Org. Chem. **2006**, *71*, 2779–2786; (b) Godet, T.; Bonvin, Y.; Vincent, G.; Merle, D.; Thozet, A.; Ciufolini, M. A. Org. Lett. **2004**, *6*, 3281–3284; (c) Raghavan, B.; Johnson, R. L. J. Org. Chem. **2006**, *71*, 2151–2154; (d) Felluga, F.; Pitacco, G.; Prodan, M.; Pricl, S.; Visintin, M.; Valentin, E. *Tetrahedron: Asymmetry* **2001**, *12*, 3241–3249; (e) Abdel, M.; Harris, B. D.; Maryanoff, C. A. Synlett **1994**, 81– 83; (f) Freidinger, R. M.; Perlow, D. S.; Veber, D. F. J. Org. *Chem.* **1982**, *47*, 104–109; (f) Serna, S.; Tellitu, I.; Dominguez, E.; Moreno, I.; San Martin, R. Org. Lett. **2005**, *7*, 3073–3076.
- (a) Pedrosa, R.; Andrés, C.; Duque-Soladana, J. P.; Mendiguchia, P. Eur. J. Org. Chem. 2000, 3727–3730; (b) Bustos, F.; Gorgojo, J. M.; Suero, R.; Aurrecoechea, J. M. Tetrahedron 2002, 58, 6837–6842; (c) Coldham, I.; Hufton, R. Tetrahedron Lett. 1995, 36, 2157–2160; (d) Quancard, J.; Labonne, A.; Jacquot, Y.; Chassaing, G.; Lavielle, S.; Karoyan, P. J. Org. Chem. 2004, 69, 7940–7948; (e) Back, T. G.; Parvez, M.; Zhai, H. J. Org. Chem. 2003, 68, 9389– 9393; (f) Bryans, J. S.; Chessum, N. E. A.; Parsons, A. F.; Ghelfi, F. Tetrahedron Lett. 2001, 42, 2901–2905; (g) Zhu, G.; Zhang, Z. J. Org. Chem. 2005, 70, 3339–3341.
- (a) For reviews, see: Titanium and Zirconium in Organic Synthesis; Marek, I., Ed.; Wiley-VCH: Weinheim, 2002; (b) New Aspects of Zirconium Containing Organic Compounds; Marek, I., Ed. Topics in Organometallic Chemistry; Springer: Berlin, 2005; Vol. 10; (c) Metallocenes in Regio- and Stereoselective Synthesis; Takahashi, T., Ed.Topics in Organometallic Chemistry; Springer: Berlin, 2005; Vol. 8, (d) Hunter, R. A.; Macfarlane, D. P. S.; Whitby, R. J. Synlett 2006, 3314– 3318; (e) Owen, D. R.; Whitby, R. J. Synthesis 2003, 2061– 2074; (f) Mori, M.; Kuroda, S.; Zhang, C. S.; Sato, Y. J. Org. Chem. 1997, 62, 3263–3270; (g) Uesaka, N.; Mori, M.; Okamura, K.; Date, T. J. Org. Chem. 1994, 59, 4542–4547.
- Vasse, J.-L.; Joosten, A.; Denhez, C.; Szymoniak, J. Org. Lett. 2005, 7, 4887–4889.
- (a) Ito, H.; Omodera, K.; Takigawa, Y.; Taguchi, T. Org. Lett. 2002, 4, 1499–1501; (b) Takigawa, Y.; Ito, H.; Omodera, K.; Ito, M.; Taguchi, T. Tetrahedron 2004, 60, 1385–1392.
- Takigawa, Y.; Ito, H.; Omodera, K.; Koura, M.; Kai, Y.; Yoshida, E.; Taguchi, T. Synthesis 2005, 2046–2054.
- (a) Dembélé, Y. A.; Belaud, C.; Villérias, J. *Tetrahedron: Asymmetry* **1992**, *3*, 511–514; (b) Benningshof, J. C.; Blaauw, R. H.; Van Ginkel, A. E.; Van Maarseveen, J. H.; Rutles, F. P. J. T.; Hiemstra, H. J. Chem. Soc., Perkin Trans. 1 **2002**, *14*, 1693–1700.
- (a) Wu, M.-J.; Pridgen, L. N. Synlett 1990, 636; (b) Wu, M.-J.; Pridgen, L. N. J. Org. Chem. 1991, 56, 1340.
- 10. List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002, 124, 827–833.
- 11. The *cis* stereochemistry was assigned after oxidative debenzylation of compound **5f** using CAN to afford *cis*-**3**.
- (a) Lee, C.-L. K.; Ling, H. Y.; Loh, T.-P. J. Org. Chem. 2004, 69, 7787–7789; (b) Bazile, T.; Bocoum, A.; Savoia, D.; Umani-Ronchi, A. J. Org. Chem. 1994, 59, 7766–7773.